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Abstract Biomass burning substantially contributes to atmospheric aerosol and greenhouse gas
emissions that influence climate and air quality. Fire radiative energy (FRE) (units: MJ) has been
demonstrated to be linearly related to biomass consumption (units: kg) with potential for improving biomass
burning emission estimation. The scalar constant, termed herein as the FRE biomass combustion coefficient
(FBCQ) (units: kg/MJ), which converts FRE to biomass consumption, has been estimated using field and
laboratory experiments, varying from 0.368 to 0.453 kg/MJ. However, quite different FBCC values, especially
for satellite-based approaches, have been reported. This study investigated the FBCC with respect to 445
wildfires that occurred from 2011 to 2012 across the Conterminous United States (CONUS) considering both
polar-orbiting and geostationary satellite data. The FBCC was derived by comparing satellite FRE estimates
with biomass consumption for the CONUS. FRE was estimated using observations from the Moderate
Resolution Imaging Spectroradiometer (MODIS) and the Geostationary Operational Environmental Satellite
(GOES); biomass consumption was estimated using Landsat-derived burned areas with fuel loadings from
the Fuel Characteristic Classification System and using combustion completeness parameterized by Landsat
burn severity and Fuel Characteristic Classification System fuelbed type. The reported results confirm the
linearity of the empirical relationship between FRE and biomass consumption for wildfires. The CONUS FBCC
was 0.374 kg/MJ for GOES FRE, 0.266 kg/MJ for MODIS FRE, and 0.320 kg/MJ considering both GOES and
MODIS FRE. Limited sensitivity analyses, comparing MODIS and GOES FRE with biomass consumption
estimated in three different ways, indicated that the FBCC varied from 0.301 to 0.458 kg/MJ.

1. Introduction

Wildfires release globally significant amounts of aerosols, trace gases, and greenhouse gases that influence
air quality, weather, and climate (Bowman et al., 2009; van der Werf et al., 2010). Researchers have devoted
considerable efforts to modeling and estimating biomass burning emissions over the last several decades.
Pyrogenic emissions are modeled conventionally in a bottom-up manner using information on the burned
area, fuel load, combustion completeness (CC), and fuel emission factors (Seiler & Crutzen, 1980). These para-
meters can be challenging to quantify accurately. For example, burned area estimates can differ by several
orders of magnitude (Boschetti et al., 2004; Kasischke et al., 2011; Randerson et al., 2012); fuel loadings
may differ by more than 35% among different fuel data sets (Zhang et al., 2008); CC could vary by more than
40% with fuel moisture content in the same fuelbed (Hély et al., 2003); many emission factors also have an
uncertainty of about 20-30% (Andreae & Merlet, 2001).

Top-down pyrogenic emission estimation methods have been developed that use satellite retrievals of the
instantaneous radiative energy released from actively burning fires detected at the time of satellite overpass.
The retrieved instantaneous radiative energy is termed the fire radiative power (FRP) (units: MW). The FRP is
proportional to the rate of biomass consumption, and temporal integration of the FRP over the life of the fire
provides an estimate of the fire radiative energy (FRE) (units: MJ), which has been shown to be linearly related
to the total amount of fuel consumed by fire (Kaufman et al.,, 1996; Wooster et al., 2003). A scalar constant is
used to convert the FRE to the total amount of biomass consumed, termed, for convenience in this paper, the
FRE biomass combustion coefficient (FBCC) (units: kg/MJ). The top-down FRE-based emission estimation
approach has been used to estimate biomass combustion from FRP retrieved from the polar-orbiting
Moderate Resolution Imaging Spectroradiometer (MODIS) and the geostationary Spinning Enhanced
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Visible and Infrared Imager for active fires detected at regional to continental scales (Ellicott et al., 2009; Kaiser
et al, 2012; Roberts & Wooster, 2008; Vermote et al., 2009; Zhang et al., 2012) and from the Geostationary
Operational Environmental Satellites (GOES) across the Conterminous United States (CONUS) (Zhang et al.,
2012; Zhang, Kondragunta, & Roy, 2014). The FBCC value is usually assumed to be fixed and has been derived
by statistical comparison of FRE retrievals with biomass consumed measurements for prescribed fires lit in
the field and under more controlled conditions in plume towers. Studies indicate that the FBCC has a value
ranging from 0.368 to 0.453 kg/MJ (Freeborn et al.,, 2008; Kremens et al., 2012; Wooster et al., 2005). However,
the range of fuel types considered in these experiments was limited, primary savanna grass (Wooster et al.,
2005); evergreen tree species including ponderosa pine, white pine, and Douglas fir (Freeborn et al., 2008);
and mixed oak (Kremens et al., 2012). In addition, the scale of prescribed fires in the field experiments
(1.8-64 m? plots; Kremens et al., 2012; Wooster et al., 2005) was much reduced compared with landscape
wildland fires. At more synoptic scales, using satellite data and models, the FBCC is suggested as varying from
0.30 to 0.52 kg/MJ in Siberia wildfires based on MODIS FRP and satellite-based carbon monoxide (CO)
retrievals (Konovalov et al., 2014), as varying from 0.13 to 1.55 kg/MJ based on comparison of MODIS FRE with
global biomass combustion estimates from the Global Fire Emissions Database (Kaiser et al., 2012), and as
varying from 1.6 to 12.0 kg/MJ (Zhang et al.,, 2012) based on the comparison of MODIS-based emissions coef-
ficients and aerosol optical thickness data (Ichoku & Kaufman, 2005; Sofiev et al., 2009).

This study quantifies the FBCC at a landscape scale, across the CONUS, by comparing polar-orbiting (MODIS)
and geostationary (GOES) satellite-retrieved FRE estimates with biomass combustion estimates for 445 wild-
land fire events from 2011 to 2012. The biomass consumption estimates were derived using Landsat 30 m
burned area maps combined with fuel load information from the Fuel Characteristic Classification System
(FCCS) and CC information parameterized with Landsat-derived burn severity estimates. The FBCC was esti-
mated by linear regression of the biomass consumption estimates against the satellite FRE estimates.
Sensitivity analyses were undertaken to examine the FBCC variation using the biomass consumptions calcu-
lated from a consistent CC in all burn severity classes and from a land-cover-driven approach endorsed for
national emission estimation (Intergovernmental Panel on Climate Change (IPCC), 2006). The paper con-
cludes with a discussion of the findings and an appropriate FBCC value for large area satellite FRE-based
quantification of biomass combustion.

2. Methods and Data
2.1. Bottom-Up Estimation of Biomass Consumption

Biomass consumption is conventionally estimated as the product of the burned area, fuel load, and CC (Seiler
& Crutzen, 1980). In this study we also incorporate the burn severity and assume that burn severity is related
positively to biomass consumption for the same fuel type. This is reasonable as fires that burn more biomass
are generally expected to have more severe postfire effects (Heward et al., 2013; Keeley, 2009; Smith &
Wooster, 2005; Veraverbeke & Hook, 2013). The burn severity is a qualitative metric that reflects the degree
of organic matter consumption from fire and relates to changes in living and dead biomass, soil exposure,
fire byproducts (char and ash), and fire effects (e.g., scorch height) (Eidenshink et al., 2007; Keeley, 2009).
Several of these parameters are not amenable to optical wavelength remote sensing and/or may not be
related in a linear way to reflectance (Disney et al,, 2011; Roy et al., 2006); however, satellite estimates of burn
severity have been widely adopted (Meigs et al., 2009; Moody et al., 2008; Rocha & Shaver, 2011), although
with variable results (French et al., 2008; Lentile et al., 2006). In this study, the biomass consumption in a
burned area was estimated as

n 3
BCamc = > D A(i, k)M(i, k)C(i, k) M
i=1 k=1

where BCyyc is biomass consumption (kg), for fuelbed category i and burn severity class k; A(i, k) is the area
burned (km?); M(i, k) is the fuel loading (kg/km?); C(i, k) is the CC (unitless: 0-1); and n is the number of fuelbed
categories, and there are three burn severity classes. The derivation of these four variables is described below.
2.1.1. Burned Area and Severity

Landsat data have been used for decades to map the spatial extent of burning and to characterize postfire
effects (Boschetti et al.,, 2015; Hawbaker et al., 2017; Lentile et al.,, 2006). In this study, data from the U.S.
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Figure 1. MTBS burn severity example derived from two Landsat images of the 2011 Last Chance fire, New Mexico, USA. (a) Prefire (23 April 2011) Landsat 5 Thematic
Mapper false color image (bands 7: 2.08-2.35 pm, 4: 0.76-0.90 pm, and 2: 0.52-0.60 um). (b) Postfire (9 May 2011) false color image. (c) Differenced normalized burn
ratio between the prefire and postfire normalized burn ratio. (d) MTBS burn severity map.

Monitoring Trends in Burn Severity (MTBS) project are used. The MTBS project uses Landsat 30 m Thematic
Mapper and Enhanced Thematic Mapper Plus data to map the burn perimeter and the burn severity for all
burned areas >404 and >202 ha in the western and eastern CONUS, respectively (Eidenshink et al., 2007).
The MTBS project produces 30 m burn severity maps (e.g., Figure 1) by visual interpretation of the
temporal difference in the normalized burn ratio (NBR), defined as the difference between the Landsat
near-infrared band (0.76-0.90 um) and the shortwave-infrared band (2.08-2.35 um) divided by their sum,
and a relativized temporal NBR difference (Cocke et al., 2005; Epting et al., 2005; Key & Benson, 2005). The
MTBS burn severity map is classified into low, moderate, or high severity classes, with an additional
unburned or undetected low severity class and an increased greenness (increased postfire vegetation
response) class (Eidenshink et al., 2007). A mask of unprocessed areas (due to cloud obscuration or land
not sensed by Landsat) is also provided.

In this study, all the MTBS burned areas defined across the CONUS for 2011 and 2012 were obtained from the
MTBS project (http://www.mtbs.gov/). A total of 2616 MTBS burned areas were available, although the final
number of burned areas used in the study was reduced to 445 due to the filtering applied (section 2.3).

In equation (1) the area burned (km?) for an MTBS burned area was derived as the product of the 30 m
pixel area (9 x 10™* km?) and the sum of the number of 30 m pixels in each of the three (low, moderate,
and high) burn severity classes and the fuelbed categories (see section 2.1.2). The unburned or undetected
low severity and the increased greenness classes were excluded in the area burned calculation. The areas
masked as unprocessed by MTBS were allocated to the three different severity classes (low, moderate, and
high severity) weighted by the ratio of the area of a severity class to the total MTBS severity mapped area
(as it is reasonable to assume that the burning conditions in the masked areas were similar to those in the
processed areas).

2.1.2. Fuel Load

Development of fuel load maps is an area of active research, particularly at national to global scale
(Pettinari & Chuvieco, 2016). The FCCS is commonly used because it includes a wide set of fuel physical
characteristics that are not specific to a particular application or fire model. The United States FCCS 3.0
provides quantitative fuelbed information compiled from multiple sources including in situ fuel data sets,
photographs, literature, and expert knowledge (Ottmar et al., 2007; Prichard et al, 2013). It defines a
fuelbed as a set of fuel characteristics on the landscape that represent a distinct combustion environment.
There are 250 fuelbeds, and each is divided into six strata with up to 18 categories: tree overstory, tree
midstory, tree understory, total trees canopy, shrub, duff, nonwoody (dead and live) vegetation, sound
woody debris (0-0.25 [0-0.6], 0.25-1 [0.6-2.54], 1-3 [2.54-7.62], 3-9 [7.62-23], 9-20 [23-51], and >20
[51] cm), and rotten woody debris (3-9 [7.62-23], 9-20 [23-51], and >20 [51] cm) (Ottmar et al., 2007).
Each stratum has one or more than one fuelbed category, and each category has common combustion
characteristics. The FCCS data set has been used to model surface fire behavior, to predict fire potentials
and effects (Cruz & Alexander, 2010; Lutes et al., 2009), and to estimate fuel consumption (FC) and fire
emissions (Anjozian, 2009; Ottmar et al.,, 2006). In this study, the 30 m FCCS fuelbed map for year 2008
and the associated lookup table of fuel loadings per fuelbed category were obtained from the FCCS
site (http://www.fs.fed.us/pnw/fera/fccs/maps.shtml).

In equation (1) the mean fuel loading of each fuelbed category and burn severity class was derived as
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Table 1

Combustion Completeness Lookup Table Defined as a Function of the Fuelbed Category and Burn Severity Class

Fuelbed Combustion completeness
Stratum Category Low severity Moderate severity High severity References
Tree canopy Overstory 0.20 0.45 0.75 Campbell et al. (2007); Ghimire et al. (2012)
Midstory 0.20 0.50 0.80
Understory 0.25 0.60 0.85
Shrubs 0.30 0.70 0.90 Campbell et al. (2007); De Santis and Chuvieco (2009);
Key and Benson (2006)
Non-woody vegetation Live 0.30 0.88 0.98 Campbell et al. (2007); De Santis and Chuvieco (2009);
Dead 0.70 0.90 1.00 Key and Benson (2006)
Duff <4 inches (10.16 cm) 0.50 0.80 0.95 Campbell et al. (2007); Ghimire et al. (2012)
Sound woody debris <0.25 inches (0.6 cm) 0.70 0.90 1.00 Campbell et al. (2007); Ghimire et al. (2012)
0.25-1 inch (0.6-2.54 cm) 0.65 0.88 1.00
1-3 inches (2.54-7.62 cm) 0.60 0.80 0.85
3-9 inches (7.62-23 cm) 0.56 0.63 0.80
9-20 inches (23-51 cm) 0.56 0.63 0.80
>20 inches (51 cm) 0.20 0.60 0.75
Rotten woody debris 3-9 inches (7.62-23 cm) 0.56 0.63 0.80 Campbell et al. (2007); Ghimire et al. (2012)
9-20 inches (23-51 cm) 0.20 0.40 0.65
>20 inches (51 cm) 0.20 0.40 0.65
S
Z;A(i, k,j)FL(i,k,j)
. j=
M) =" @

where M(i, k) and A(j, k) are the mean fuel loading (kg/km?) and the area burned (km?), respectively, in burn
severity class k and fuelbed category i over the burned area; j is one of the fuelbeds (a total number of s,
5 < 250) that include the fuelbed category i; and A, k, j) and FL(j, k, j) are the area burned (km?) and the fuel
loading (kg/km?), respectively.

Change in the fuelbeds and associated fuel loadings between the production year of the FCCS map and the
year of the burn due to land use change, disturbance (previous fires, insects, and drought, etc.), and vegeta-
tion seasonal phenology may introduce uncertainty into the biomass consumption estimates. Consequently,
the sensitivity of FBCC to the biomass consumption was tested (section 2.5).

2.1.3. Combustion Completeness

The CC, that is, the proportion (0 to 1) of biomass consumed as a result of fire, is dependent on the fuel
characteristics, including fuel moisture content, fuel arrangement, and fuel surface area to volume ratio,
and environmental conditions (temperature, relative humidity, wind velocity, and slope) that affect the fire
behavior and the fire duration (Hély et al., 2003; Ito & Penner, 2004; Ward et al.,, 1996). It is very challenging
to obtain reliable spatially explicit CC maps at landscape scale (Veraverbeke & Hook, 2013). In the absence
of any definitive spatially explicit CC data, published lookup tables that define CC as a function of the fuelbed
category and burn severity class were used in this study (Table 1). The published CC values were obtained by
qualitative field-based assessments of burn severity in the United States (Campbell et al., 2007; De Santis &
Chuvieco, 2009; Ghimire et al.,, 2012; Key & Benson, 2006), typically inferred by human assessments and codi-
fied via the composite burn index (CBI) (Key & Benson, 2006) or the modified CBI (GeoCBI) (De Santis &
Chuvieco, 2009). The CBI and GeoCBl indices provide a score from 0 to 3, based on fire manager and ecologist
qualitative observations of a variety of postfire effects including FC, change in soil color, foliage alteration,
change in plant cover, canopy mortality, and scorch height (De Santis & Chuvieco, 2009; Key & Benson,
2006). The CBI and GeoCBI have been shown to be proportional to satellite-derived NBR and differenced
normalized burn ratio values but with variable levels of statistical similarity (De Santis & Chuvieco, 2009;
French et al., 2008; Keeley, 2009; Lentile et al., 2006; Veraverbeke & Hook, 2013) and as noted earlier some
of the postfire effects may not be apparent in optical wavelength data and/or related in a linear way to reflec-
tance (Disney et al,, 2011; Roy et al., 2006).

The CC values listed in Table 1 were applied for fuelbed category i and burn severity class k as equation (1)
and assuming that the CC was the same for each fuelbed category and burn severity class across each
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MTBS burn and for all the burns considered across the CONUS. The sensitivity of FBCC to CC was also tested
(section 2.5).

2.2. Top-Down Estimation of Biomass Consumption

Biomass consumption was derived in a top-down way from satellite (MODIS or GOES) estimates of FRE
derived over each MTBS burned area (Wooster, 2002; Wooster et al., 2005) as

BCrre =/ FRE (3)

where BCgge is biomass consumption (kg), 5 is the FBCC (kg/MJ), and the FRE is the MODIS or GOES FRE (MJ)
defined as below.

2.2.1. MODIS FRE Estimation

The global Collection 5 MODIS 1 km Level 2 active fire product detects the 1 km location and time of fires that
are burning at the time of overpass of the NASA Terra (MOD14) and Aqua (MYD14) satellites under cloud-free
conditions (Giglio, 2013; Giglio et al., 2003). In this study, MOD14 and MYD14 active fire products for
2011-2012 were obtained from the NASA Reverb data portal (http://reverb.echo.nasa.gov/). The products
contain for each 1 km pixel whether an active fire was detected, the detection confidence, the FRP (MW),
the MODIS band 21 (3.660-3.840 pm) and band 31 (10.780-11.280 um) blackbody temperatures (K), and
average blackbody temperature in these two bands of the surrounding pixels. The MODIS FRP is calculated
from band 21 brightness temperature based on a modeled relationship developed in the Smoke, Clouds,
and Radiation (SCAR) field experiments (Kaufman et al., 1998). If no MODIS active fire was detected then
the surface status (land, water, cloud, or unknown) is defined. Only the nominal- and high-confidence fire
detections were considered in this study to remove uncertain active fire detections that are classified as
low-confidence detections in the Collection 5 MODIS active fire product (Giglio, 2013). Low-confidence detec-
tions are likely to be associated with the false alarms, for example, associated with solar heated charred
ground surrounded by cool unburned areas. The Level 2 products are defined in the MODIS orbit geometry,
corresponding to approximately 5 min of sensing in the track direction, covering an area of approximately
2,340 by 2,030 km in the across- and along-track directions, respectively. The MODIS scans ten 1 km pixel scan
lines per mirror rotation over £55° and the dimensions of the sensed pixel increase from ~1 km at nadir to
~2.01 km along track and ~4.83 km along scan at the scan edge (Wolfe et al., 1998, 2002). This geometry
and the MODIS point spread function can result in the same single fire event being detected two or three
times in consecutive scans (Freeborn et al., 2014; Peterson et al., 2013). Accordingly, detections in consecutive
scans were considered as duplicated and were removed if they meet the following conditions: (1) detected at
the same satellite view angles, (2) difference in observing time is less than 1 min, and (3) distance between
two fire pixels is shorter than the along-track dimension of the fire pixels. After this filtering, there are, at
CONUS latitudes, a maximum of four MODIS active fire detection opportunities (acquired approximately at
1:30, 10:30, 13:30, or 22:30 local time).

The MODIS FRP is underestimated at greater scan angle because the observed pixel size increases with scan
angle (Freeborn et al,, 2011; Kumar et al., 2011). To mitigate this effect, the FRP values were adjusted as

FRPagj = FRPgps X & (4)

where FRP,; is the adjusted FRP (MW), FRP is the MODIS retrieved FRP (MW) stored in MOD14 or MYD14,
and ¢ is a published adjustment factor (unitless) defined as a function of the scan angle (Freeborn et al,, 2011).

The FRE was estimated from the adjusted MODIS FRP according to the established trapezoid method
(Boschetti & Roy, 2009). The method can be applied to estimate FRE at a pixel level or for a cluster of pixels
within a burned area. In this study, a cluster is considered as all the MODIS active fire pixels (and associated
FRP values) within an MTBS burn perimeter over the life time of the fire. First, the cluster-level FRP was
derived as

u
FRP(t;) = > FRP.g(m, t;) )
m=1
where FRP(t;) is the cluster-level FRP (MW) at time t; when either MODIS sensor detected a fire, FRP,q;(m, t) is

the adjusted FRP of the mth fire pixel (equation (4)), and u is the total number of active fire pixels detected by
MODIS at time t; within an MTBS burned perimeter. Then, the MODIS FRE was derived as
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FRE_ Y § [FRP(, t;11) + FRP(g, £5)] (ts1 — t;)

2 (6)

g=1 s=1

where FRE is the MODIS FRE (MJ) released over the life of the fire in the MTBS burned area, g is total number
(g = 4) of MODIS observing opportunities on the gth day, p is the total number of days that a fire event lasted,
and FRP(g, t,) is the cluster-level FRP (equation (5)) at time t, (seconds from 12:00 a.m. local time) on the gth
day. Note that FRP(g, t;) was set to zero if there was no active fire detection on the gth day at time t;.
2.2.2. GOES FRE Estimation

The GOES-West and GOES-East satellites each sense the CONUS every half an hour (or every 5-15 min in
subregions) with a 4-7 km spatial resolution depending on the sensed CONUS location. The WildFire
Automated Biomass Burning Algorithm (WF_ABBA Version 65) active fire product defines the location and
timing of fires sensed by the GOES geostationary satellites (Prins et al., 1998; Schmidt & Prins, 2003). It pro-
vides the active fire detection date and time, geographic coordinate, pixel area, the FRP (MW), ecosystem
type, and a quality flag. The FRP is calculated from the middle infrared band (3.9 um) using the method devel-
oped in (Wooster et al., 2003). The WF_ABBA-based GOES fire products for 2011-2012 were obtained from
the National Oceanic and Atmospheric Administration (NOAA) (http://satepsanone.nesdis.noaa.gov/pub/
FIRE/forPo/).

Successful GOES FRP retrievals are often temporally sparse due to cloud obscuration and sensor saturation
(Prins et al., 1998). Therefore, the GOES FRP data were adjusted using the method described in (Zhang
et al, 2012). The mean 15 min GOES FRP was defined independently for five ecosystems: forest, savanna,
shrubland, grassland, and cropland, providing one mean CONUS FRP value every 15 min per ecosystem.
The five ecosystems cover all of the CONUS and were defined by the International Geosphere-Biosphere
Programme ecosystem classification (Loveland et al., 2000). The resulting FRP ecosystem-specific 15 min
diurnal climatologies were used to adjust the 2010-2012 good quality FRP values over each MTBS burned
area using a least squares approach (Zhang et al., 2012). For brevity, we refer to the adjusted FRP time series
data as the pixel-level GOES FRP data.

All the pixel-level GOES FRP data within an MTBS burn perimeter were considered as a cluster. The cluster-
level GOES FRP over a burned area was calculated as

FRP(t) = > FRP(t,e) @)
e=1

where FRP(t) is the cluster-level GOES FRP (MW), FRP(t, e) is the eth pixel-level FRP (MW) at GOES observation
time t, and v is the total number of GOES active fire detections at that time within the MTBS burned perimeter.

It is well established that MODIS is able to detect smaller and cooler fires than GOES due primarily to the
higher spatial resolution and also dedicated active detection capabilities of MODIS (Freeborn et al., 2009;
Roberts et al., 2005). Consequently, the following adjustment was applied:

FRPadj(t) = FRP(t) + FRPOffset(t) (8)

where FRP,(t) is the adjusted GOES cluster-level FRP (MW); FRP(t) is the cluster-level GOES FRP calculated
from equation (7), at GOES observation time t; and FPRy:(t) is an FRP offset value at time t derived from
the difference between the cluster-level MODIS and GOES FRP values (equations (5) and (7)) for that day.
FPRofiset(t) was determined based on the following steps. First the difference between the cluster-level
MODIS FRP and the temporally closest cluster-level GOES FRP value was calculated for each MODIS observa-
tion during a 24 hr period, termed for brevity FPR¢tset(tmopis), Where tyopis is the MODIS observing local time
(tmopis is approximately one of 1:30, 10:30, 13:30, or 22:30). If there were no MODIS FRP data over the burn in
a 24 hr period then FPR¢(t) was set to zero for the period. If there were one or two MODIS FRP values in the
24 hr period then FPR¢se¢(t) Was set as the average of the FPRygset(tmopis) Values. If there were more than two
MODIS FRP values then the FPRyset(t) Was set to the first FPRysset(tmopis) Value for all times before the first
MODIS observation in the day, or was linearly interpolated in time from the two closest FPR¢tset(tmopis)
values for times between the MODIS observations, or was set to the last FPR¢set(tmopis) Value in the day
for all times after the last MODIS observation. The results of this process are illustrated in Figure 2 for four
cases showing different numbers of MODIS active fire detections in a 24 hr period.
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Figure 2. lllustration of the adjustment of cluster-level GOES FRP) over a 24 hr period for four examples where there are (a) one, (b) two, (c) three, and (d) four
contemporaneous cluster-level MODIS FRP values. The gray and black filled cycles show the cluster-level GOES FRP before and after the adjustment, respectively,
and the diamonds show the cluster-level MODIS FRP. The examples show satellite data for 23 August, 27 August, 30 July, and 1 September 2012, respectively,
acquired over the Halstead fire, Idaho, USA.

The FRE was estimated from the adjusted GOES FRP for each MTBS burned area as

n 9

FRE = ) " [FRPaq;(1) x900] )

d=1 t=1
where FRE is the GOES FRE (MJ) released over the life of the fire in the MTBS burned area, n is the total number
of days that the fire event lasted, and FRP,;(t) is defined as equation (8) for every 15 min (corresponding to
900 s), and there are 96 15 min periods each day (24 hr). This implicitly assumes that a fire event burned
consistently in the same way in each 15 min period (Zhang et al., 2012).

2.3. Processing of Data to Ensure Contemporaneous Observations

The MTBS burned area perimeters were intersected spatially with the locations of the MODIS and GOES active
fire detections so that the satellite FRE could be compared with the Landsat-derived biomass consumption
(equation (1)) for each MTBS burned area. Specifically, the satellite active fire detections were projected into
the Universal Transverse Mercator (UTM) projection defining the MTBS fire perimeter data. Each burned area
perimeter was buffered outward by 5 km to accommodate for the coarser spatial resolution of the 4 km GOES
active fire detections relative to the 1 km MODIS detections. All the active fire detections located within each
buffered perimeter were considered within 80 days after the date of fire ignition defined in the MTBS burn
metadata. An 80 day temporal threshold was used as several extensive CONUS fires lasted up to two months.
This process is illustrated in Figure 3, which shows an example where active fire detections of GOES and
MODIS were spatially and temporally intersected with an MTBS burned area.

All MTBS burned areas with insufficient active fire detections were removed from the analysis. To do this, the
geographic spatial coverage of the active fire detections was derived as the spatial union of all the fire detec-
tion pixel areas within the 5 km buffered MTBS burned area over 80 days. The GOES fire pixel area was
obtained from the WF_ABBA Version 65 GOES active fire product, and the MODIS fire pixel area was calcu-
lated using the MODIS along-scan and along-track pixel dimensions (Giglio, 2013). For these two sensors,
their pixel areas increase as scan angle increases from nadir to scan edge and the pixel shapes were approxi-
mated with rectangles in this study. For instance, for a MODIS fire pixel, its along-scan and along-track pixel
dimensions were taken as the product of the length and width of the rectangle. The burned area was rejected
from consideration if the geographic spatial coverage of the active fire detections was less than 85% of the
area mapped by MTBS as low, moderate, and high burn severity. The 85% threshold was set quite
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Figure 3. Spatial and temporal match of MTBS Landsat burned area and severity classes (left) with MODIS and GOES active fire detections (right) for the Halstead fire

in Idaho, 2012.

conservatively to prevent satellite FRE from being grossly underestimated due to insufficient FRP sampling,
although burned areas containing persistently burning active fires (i.e., forested systems) are less likely to
be rejected. A total of 445 burned areas were selected in this way.

2.4. Estimation of the FRE Biomass Combustion Coefficient (FBCC)

The bottom-up (BCauc; equation (1)) and top-down (BCrgg; equation (3)) biomass consumption estimates
should equal the actual biomass consumption over the same fire event if the models, assumptions, and para-
meters, implicit in their derivations, are correct. In this study, we assume that this is the case, that is, that
BCanic equals BCrrg, and so rearranging equations (1) and (3) provides

BCamc = FBCC  x FRE (10)

where BCypc is the biomass consumption (kg) derived as equation (1), FRE is the satellite derived FRE (MJ)
defined by equation (6) (MODIS FRE) or equation (9) (GOES FRE), and FBCC is the FBCC (kg/MJ).

The FBCC was derived by linear ordinary least squares regression of the BCyyc (dependent variable) and
satellite FRE estimates (independent variable) for the 455 CONUS burned areas and forcing the regression
to have a zero intercept value. This was undertaken three times: considering the MODIS FRE, the GOES
FRE, and the average of the MODIS and GOES FRE derived for each burn. The regression coefficient of
determination (r?) and p-value were used to test the statistical significance of the FBCC
regression coefficients.

2.5. Sensitivity Analysis

There are several possible error sources that are discussed in the discussion. As there are no independent
satellite FRE, or ground truth FC data, for the 455 MTBS burned areas, only a limited sensitivity analysis could
be undertaken. Two sensitivity analyses of the bottom-up biomass consumption estimation were conducted.

First, the CC parameterization with respect to burn severity (Table 1) was replaced with a single CC of 0.5, that
is, simply assuming that half of the fuel load burned regardless of the fuel type or the burn severity. This value
was used because it is close to the median value in Table 1. The biomass consumption (BCypc) was then
calculated as equation (1) for the 445 selected MTBS burned areas using CC = 0.5 and the FCCS fuel loadings
as before.

Second, the biomass consumption was computed in a different way using a land-cover driven approach
endorsed for national emissions estimation (IPCC, 2006) defined as

h
BCamc = > _ A(IFC()) a1

1=1

where BCyyc is biomass consumption (kg) in the MTBS burned area; there are a total of h land cover types in
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Figure 4. The selected 2011 and 2012 CONUS MTBS burned areas (total 445, orange and red colors) and the biomass consumption estimated by the bottom-up
method (equation (1)) based on the burn severity parameterized combustion completeness. (top) The spatial distribution of the biomass consumption in the
selected 445 burned areas (colored polygons); the gray polygons show the other 2011 and 2012 available MTBS burned areas that were not considered as they did
not have sufficient contemporaneous MODIS and GOES active fire detections (see section 2.3). (bottom) The histogram of the biomass consumption in the selected
445 burned areas.

the burned area and the /th land cover type has area burned A(/) (km?) and fuel consumption FC()) (kg/km?).
The 30 m National Land Cover Database (NLCD) 2011, which defines 16 land cover classes over the CONUS
(Homer et al., 2015) and has a reported overall accuracy of 78.7% (Wickham et al., 2013), was used to
define the land cover classes that were intersected (as described above in section 2.3) with each buffered
MTBS burned area. The IPCC provides mean FC (units: kg/m?) for broadly defined land cover types that
were derived from published literature estimates (IPCC, 2006). The broadly defined land cover types were
cross-walked to NLCD land cover types. Across the 455 burned areas in this study there were only five
(nonwater) IPCC unique mean FC values of 0.36 kg/m? (woody wetland and herbaceous wetland NLCD
classes), 0.376 kg/m? (grassland, pasture, and developed open NLCD classes), 0.55 kg/m? (crops NLCD
classes), 1.43 kg/m? (shrub, scrub NLCD classes), and 5.04 kg/m? (deciduous, mixed, and evergreen forest
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Figure 5. Biomass consumption (Figure 4) per area burned (units: kg/m2) in the selected 2011 and 2012 CONUS MTBS burned areas (total 445). (top and bottom) The
spatial distribution and histogram of the biomass consumption per area burned, respectively, across the CONUS.

NLCD classes). The IPCC forest FC estimate used (5.04 kg/m?) is similar (difference < 8%) to recent field
measured U.S. forest mean FC data (van Leeuwen et al., 2014).

3. Results

Figure 4 shows the 445 (229in 2011 and 216 in 2012) MTBS burned areas, selected because they had contem-
poraneous MODIS and GOES active fire detections, and their biomass consumption estimated using the
bottom-up approach (equation (1)). The 445 MTBS burned areas occurred mainly in the west and southeast
CONUS and ranged in area from 1.221 to 1,353.088 km?. The burned areas in the southeast were generally
smaller and varied in size from 1.221 to 45.977 km?2. The largest burn was the Wallow fire in Arizona that
burned 1,353.088 km? of predominantly mixed conifer forest including ponderosa pine, Douglas-fir, aspen,
and Gambel oak (Waltz et al,, 2014). The biomass consumption for the 455 burns varied from 2.47 x 10~*
to 4.08 Tg. Larger burned areas tended to have greater biomass consumption. All the burns with more
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Figure 6. Comparison of the biomass consumption derived using the burn severity parameterized combustion completeness (CC) approach (Figure 4) with (a) the
biomass consumption derived using the same method but fixed CC = 0.5 and with (b) the IPCC land-cover-driven approach (equation (11)). Linear regressions of the
plotted data (solid lines) and the 1:1 line for comparison (dashed lines) are shown. The regression slope terms are the estimated FBCC values.

than 1.0 Tg consumption occurred in the western CONUS, where the greatest biomass consumption (4.08 Tg)
was for the Wallow fire. The MTBS burn severity for the 455 burned areas was quite variable with no clear
geographical pattern across the CONUS. The proportions of low, moderate, and high burn severity areas
within a burned area on average were 62%, 27%, and 11%, respectively, across the 445 burned areas.

Figure 5 shows the biomass consumption per unit area, found by dividing the biomass consumption
(Figure 4) by the area burned. The biomass consumption per unit area was generally smaller in the southeast
(<3.0 kg/m?) and larger in the western states, particularly California, Oregon, and Washington, with values
ranging from 1.5 to 20.0 kg/m?. For the largest Wallow fire, the biomass consumption per unit area was
3.02 kg/m? (Figure 5), which differs by only 4% from the biomass consumption estimated using the
Consume 3.0 FC model (Veraverbeke & Hook, 2013). The results illustrated in Figure 5 are comparable in
magnitude with biomass consumption estimates across the CONUS for different fires and years (where fuel
conditions and fire behavior differences mean that exact quantitative comparison is not meaningful;
Lydersen et al., 2014; Prichard et al., 2017; Yokelson et al., 2013).

Figure 6 illustrates a comparison of the biomass consumption estimated by the bottom-up method based on
the burn severity parameterized CC approach with the same approach but assuming CC = 0.5 (Figure 6a) and
with the IPCC FC method (Figure 6b). Linear regression of the results indicates that the different biomass
consumption estimates were significantly correlated (r* > 0.89 and p < 0.001). The regression slopes indicate
that over the 445 sites, the burn severity parameterized biomass consumption estimates were larger by 3%
than the CC = 0.5 estimates but 32% smaller than the IPCC-FC-based biomass consumption estimates.
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Figure 7. Comparisons between the adjusted cluster GOES FRE (equation (9)) and the cluster MODIS FRE (equation (6)) over the selected burned areas for (a) 2011
(229 burned areas), (b) 2012 (216 burned areas), and (c) for both 2011 and 2012 (445 burned areas). Linear regressions of the plotted data (solid lines) and the 1:1 line

for comparison (dashed lines) are shown.
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Figure 8. Relationships between the biomass consumption estimated by the burn severity parameterized CC approach (equation (1)) and the adjusted cluster
GOES FRE (equation (9)) and the cluster MODIS FRE (equation (6)) and the average of the MODIS and GOES FRE in each burned area, for 2011, 2012, and both
years together. Linear regressions of the plotted data (solid lines) and the 1:1 line (i.e., slope of 1.0 kg/MJ) (dashed lines) are shown. The regression slope terms are the
estimated FBCC values.

Figure 7 shows, for the burned areas in 2011, 2012, and for both years combined, the relationship between
the adjusted cluster GOES FRE and the cluster MODIS FRE. The sensor FRE data were significantly correlated
(> 0.8and p < 0.001) and the GOES FRE was about a third less than the MODIS FRE. In Figure 7, the GOES
FRE varied from 0.99 x 10° to 9.41 x 10° MJ and the MODIS FRE varied from 5.67 x 10° to 13.68 x 10° MJ. The
greatest FRE values were for the 2011 Wallow fire that also had the greatest area burned.

Figure 8 shows the relationships between the biomass consumption estimated by the burn severity parame-
terized CC approach and the GOES FRE, MODIS FRE, and the average of the GOES and MODIS FRE. The results
for the burned areas in 2011, 2012, and for both years combined are shown. In all cases, the data were
significantly correlated (> 0.75 and p < 0.001). Recall that from equation (10) the slopes of the regressions
plotted in Figure 8 provide an estimate of the FBCC. The FBCC estimates from the GOES FRE were larger than
those from MODIS FRE by 34% and 46% in 2011 and 2012, respectively. When considering both years, the
FBCC estimates were 0.374 kg/MJ for GOES FRE, 0.266 kg/MJ for MODIS FRE, and intermediate (0.320 kg/
MJ) for the average MODIS and GOES FRE.

Figure 9 shows the same results as Figure 8 for both years combined (2011 and 2012) but compares the
biomass consumption estimated with CC = 0.5 and with the IPCC-FC method against the satellite FRE. All
the regressions were significant (> 0.79 and p < 0.001). When both years were considered, the FBCC values
from GOES FRE were larger than those from the MODIS FRE by 37% for both the CC = 0.5 estimation and the
IPCC-FC estimation. The FBCC values from the average of GOES and MODIS FRE estimates were 0.301 and
0.458 kg/MJ for the CC = 0.5 estimation and the IPCC-FC estimation, respectively, considering both years.
In comparison with the FBCC estimates based on burn severity parameterized CC (Figure 8) when both years
were considered, the FBCC values derived assuming CC = 0.5 (Figure 9) were smaller by 7% for GOES FRE and
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Figure 9. Relationships between the biomass consumption estimated with CC = 0.5 and with the IPCC-FC method with the adjusted cluster GOES FRE (equation (9))
and the cluster MODIS FRE (equation (6)) and the average of GOES and MODIS FRE in each burned area, for 2011, 2012, and both years together. Linear regressions of
the plotted data (solid lines) and the 1:1 line (i.e., slope of 1.0 kg/MJ) (dashed lines) are shown. The regression slope terms are the estimated FBCC values.

5% for MODIS FRE, respectively, and the FBCC values derived from the IPCC-FC estimation (Figure 9) were
larger by 41% for GOES FRE and 45% for MODIS FRE, respectively.

4, Discussions and Conclusions

This study investigated the relationship between satellite-retrieved FRE and biomass consumption estimates
for 445 wildland fire events in 2011 and 2012. This large sample helps to improve our understanding of the
FBCC for the estimation of biomass consumption using satellite FRP retrievals. The FBCC bridges the biomass
combustion rate to FRP that provides a direct way to quantify biomass consumption (Kaufman et al., 1998;
Wooster et al., 2003). The FRE-based top-down approach may be advantageous compared to bottom-up
approaches as fuel load and CC information are not required (Roberts et al., 2005; Wooster et al., 2003).
However, the FBCC value derived from different approaches is quite variable (0.13 to 12.0 kg/MJ)
(Freeborn et al., 2008; Kaiser et al., 2012; Konovalov et al., 2014; Kremens et al., 2012; Wooster et al., 2005;
Zhang et al., 2012), which is a concern for the use of satellite FRE-based biomass consumption and biomass
burning emission estimation.

The biomass consumption derived for Landsat mapped burned areas using a conventional bottom-up
approach (equation (1)) may have considerable uncertainty, even though the best data available, that is,
MTBS Landsat burned area and FCCS fuel bed and fuel loading information, were used. The area burned from
MTBS is generally considered reliable, but in certain mapped burns the interior unburned areas may not be
delineated, although these interior unburned areas typically have low severity (Sparks et al.,, 2015) that may
reduce the impact of MTBS burned area commission errors. The MTBS definition of burn severity is not
consistently quantified but rather is based on subjective thresholding of the Landsat NBR that reduces their
reliability (Eidenshink et al., 2007). The FCCS fuel loading information are static and so do not reflect seasonal
and interannual fuel load changes (Pellizzaro et al., 2007). Moreover, the FCCS information may not reflect the
fire history reliably; for example, a fire in the years before 2011 may have reduced the fuel load but may not
be reflected in the FCCS (Steel et al.,, 2015). In addition, although the CC values in Table 1 were compiled from
a large number of available forest and nonforest sources (including 15 studies summarized in Ghimire et al.,
2012), they may not adequately represent the fire behavior and fuel beds for the 445 fire events and could be
augmented using more estimates such as, for example, Lentile et al. (2009). Further, the CC parametrization
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by burn severity was simple, although based on empirical evidence of a linear relationship between these
measures, and is known to have quite variable results (French et al., 2008; Veraverbeke & Hook, 2013).

In the absence of independent ground-truth biomass consumption data, sensitivity analyses were conducted
to examine the sensitivity of the bottom-up biomass consumption estimation. The biomass consumption
estimated by the bottom-up method (equation (1)) based on the burn severity parameterized CC was close
to that assuming a fixed CC = 0.5 (Figure 6a). We note that CC = 0.5 is only 10% less than the mean of all the
CC values parameterized by burn severity class (Table 1) and is about 18% smaller than the average of CC
values measured at 15 sites across the CONUS (van Leeuwen et al., 2014). For the fixed CC results potentially
large biomass consumption biases may occur if the CC values are very different to the fixed value. This may
be the case as across the 445 CONUS burned areas, the proportions of low, moderate, and high burn severity
areas were 62%, 27%, and 11%, respectively. We also note that CC and burn severity may not always be
directly related. For example, large trees that burn for long periods may result in white ash that are not
detected and/or have low Landsat-derived burn severity (Roy et al., 2010; Smith & Hudak, 2005). Similarly,
a fire may result in near complete combustion but the Landsat burn severity will not be mapped as high
or moderate severity if only a fraction of the pixel is burned (Roy & Landmann, 2005).

Despite these caveats, the utility of the CC parameterization is evident in Figure 6a, which shows the biomass
consumption estimates based on the burn severity parameterized CC against the CC = 0.5 based biomass
consumption. In this figure two burned areas had biomass consumption estimates that were 59% and 23%
greater than when CC = 0.5 was assumed, and these were for burned areas with moderate and high burn
severity. Conversely, the one burned area with a biomass consumption estimate particularly below the 1:1 line
was a low burn severity fire. Besides the parameterized CC, the need of spatially explicit fuel characteristics at
burned area level was also suggested in the comparison of biomass consumption estimates based on the
burn severity parameterized CC against those based on the IPCC approach (Figure 6). The biomass consump-
tion estimated using the IPCC land cover-based method was 32% greater than that based on burn severity
and had much more scatter (Figure 6b) than the CC = 0.5 based biomass consumption (Figure 6a). This could
be due to the significantly simplified IPCC FC approach that is insufficient to characterize individual fire events.
The use of only five unique IPCC FC values for the 445 burned areas will provide rather generalized biomass
consumption estimates that do not capture variations associated with fire behavior and site conditions.

Researchers have suggested a number of factors that may impact the reliability of satellite FRE retrieval.
These include sensitivity to active fire detection capabilities (Giglio et al., 2003), under sampling of active fire
events due primarily to the satellite orbit and sensing geometry and also cloud, smoke and overstory vegeta-
tion obscuration (Boschetti & Roy, 2009; Freeborn et al,, 2014; Kumar et al,, 2011; Mathews et al., 2016; Xu
et al., 2010), reduction in FRP values due to the absorbing properties of smoke and atmospheric water vapor
(Wooster et al., 2005) and fuel moisture (Smith et al., 2013), and issues with the geometric sensing character-
istics relative to the spatial configuration and temperatures of actively burning fires (Calle et al., 2009;
Freeborn et al., 2014). In this study polar-orbiting MODIS and geostationary GOES FRP data were used to
derive the FRE. Compared to GOES, the MODIS is able to detect smaller and cooler fires but no more than four
times per day. Conversely, the GOES has the capability to capture the fire diurnal variation due to its 5-15 min
sampling but cannot detect small and cool fires (Freeborn et al., 2011; Roberts & Wooster, 2014; Xu et al.,
2010; Zhang et al, 2012). In this study, the pixel-level MODIS FRP was adjusted using the method by
Freeborn et al. (2011) to mitigate the underestimation of MODIS FRP at off nadir (equation (4)) and aggre-
gated to obtain adjusted cluster-level MODIS FRP (equation (5)). To account for the underestimation of
GOES FRP due to missed small and cool fires, the cluster-level GOES FRP estimate at each GOES observing
time was adjusted over each of the 455 burned areas by adding an FRP offset (equation (8)) that was calcu-
lated from the difference between the cluster-level GOES and adjusted MODIS FRP estimates. The example in
Figure 2 illustrates the adjustment of cluster-level GOES FRP in different situations. The cluster-level MODIS
FRP and adjusted GOES FRP were applied to estimate adjusted MODIS FRE and adjusted GOES FRE using
established temporal integration methods (Boschetti & Roy, 2009; Zhang et al,, 2012). The adjusted MODIS
and GOES FRE values were significantly correlated across the 445 burned areas, and the GOES FRE was about
a third less than the MODIS FRE. Other researchers have noted smaller MODIS FRE than geostationary FRE
derived over Africa from the Meteosat Second Generation Spinning Enhanced Visible and Infrared Imager
FRE (Freeborn et al, 2011; Vermote et al, 2009) although this could be attributed to different FRE
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derivation methodologies, fire regimes, and sensor capabilities. The satellite-derived FRE in this study could
not be validated because there are no independent and contemporaneous FRE measurements. The relative
error characteristics of the adjusted GOES and MODIS FRE are unknown and so for each burned area their
average was taken. Further work to investigate a weighting scheme or some other way to optimally combine
the FRE from these the MODIS and GOES sensors is recommended.

Despite the above issues, this study demonstrated that the derived FBCC values were relatively stable.
Comparing the satellite FRE with the biomass consumption estimated by the burn severity parameterized
CC approach provided FBCC values of 0.374 kg/MJ (GOES), 0.266 kg/MJ (MODIS), and 0.320 kg/MJ (average
of GOES and MODIS FRE) when both years (2011 and 2012) were considered for the 445 CONUS fire events,
and for either year, the derived FBCC value of one year varied by less than 6% of the other year's value. The
other biomass consumption estimation methods considered provided similar magnitude FBCC values, with a
two-year average GOES and MODIS FRE estimate of 0.301 kg/MJ when the CC was fixed as 0.5 and 0.458 kg/
MJ for the IPCC-based method. All of these values are similar to the FBCC values derived from field and plume
tower prescribed fire experiments (0.368-0.453 kg/MJ) (Freeborn et al., 2008; Kremens et al., 2012; Wooster
et al,, 2005) and also with certain synoptic-scale satellite research (0.300-0.520 kg/MJ) (Konovalov et al.,
2014). They are smaller, however, than the FBCC values (0.13-1.55 kg/MJ) estimated using Global Fire
Emissions Database and MODIS FRE (Kaiser et al., 2012) and much smaller than the values (1.6-12.0 kg/M)J)
derived comparing MODIS-based emission coefficients and aerosol optical thickness data (Sofiev et al.,
2009; Zhang et al., 2012). The large discrepancies among FBCC values derived by different approaches may
explain some of the discrepancies among the existing FRP-based emission data sets (Zhang et al,, 2012;
Zhang, Wang, et al.,, 2014).

In summary, this study confirms the empirical relationship between biomass consumption estimates and FRE
for landscape wildland fires. Despite the uncertainties in the data used, it is important to note that for all cases
the experiments confirmed the linear relationship between FRE and biomass consumption observed in pre-
vious studies (Freeborn et al., 2008; Kremens et al., 2012; Wooster et al., 2005). For combined use of GOES and
MODIS FRE, an FBCC value of 0.320 kg/MJ is suggested. Landscape scale and detailed fire event specific
experiments are needed. However, this is challenging due to the difficulty in measuring prefire and postfire
fuel loads and spatially explicit CC over large burned areas. These challenges might be mitigated by advances
in technologies of remote sensing and field measurements, for example, application of LiDAR in estimation of
fuel loads from airborne- and ground-based platforms (Cooper et al., 2017; Hudak et al., 2016; Price & Gordon,
2016) over prescribed fires, and also over wildfires if the prefire fuel conditions can be assessed.
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